Jim Thorne – UC Davis jhthorne@ucdavis.edu

How is climate change likely to shift precipitation and vegetation?

How will these changes impact watersheds and wildlife?

Annual Average Precipitation and Temperature for California

Mean Annual Minimum Temperature

Mean Annual Precipitation

Mean Annual Runoff

Ponderosa Pine Transition

Lower Edge

Generally less water to work with As pressures mount.

All aspects of water retention need work – starting with our watersheds

> Snowpack Meadows **Riparian areas to reduce erosion and landslides** Hill slopes – woodlands and forests Valleys

Need to optimize the functioning of the watersheds to get more water – People **Ecosystems** Wildlife & Habitats

Need to slow water across the landscapes. Manage Watersheds holistically – Green Black

Particularly in Watersheds that are important for drinking and supply.

California is a Biodiversity Hotspot Vegetation Changes in species mix Species will change locations Zones of stability (climate refugia) Zones of transition

Wildlife

Zones of stability (climate refugia) Corridors/connectivity

(Whitney Albright)

Thank you!

jhthorne@ucdavis.edu

Questions – Challenges – Risks – Actions

<u>Water</u>

<u>Landscapes</u> Manage the green for risk reduction Manage the black for resilience

<u>Agriculture</u>

Urban, People, Infrastructure

Forests and Ranchlands

Biodiversity